Package: traineR 2.2.0
Oldemar Rodriguez R.
traineR: Predictive (Classification and Regression) Models Homologator
Methods to unify the different ways of creating predictive models and their different predictive formats for classification and regression. It includes methods such as K-Nearest Neighbors Schliep, K. P. (2004) <doi:10.5282/ubm/epub.1769>, Decision Trees Leo Breiman, Jerome H. Friedman, Richard A. Olshen, Charles J. Stone (2017) <doi:10.1201/9781315139470>, ADA Boosting Esteban Alfaro, Matias Gamez, Noelia García (2013) <doi:10.18637/jss.v054.i02>, Extreme Gradient Boosting Chen & Guestrin (2016) <doi:10.1145/2939672.2939785>, Random Forest Breiman (2001) <doi:10.1023/A:1010933404324>, Neural Networks Venables, W. N., & Ripley, B. D. (2002) <ISBN:0-387-95457-0>, Support Vector Machines Bennett, K. P. & Campbell, C. (2000) <doi:10.1145/380995.380999>, Bayesian Methods Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995) <doi:10.1201/9780429258411>, Linear Discriminant Analysis Venables, W. N., & Ripley, B. D. (2002) <ISBN:0-387-95457-0>, Quadratic Discriminant Analysis Venables, W. N., & Ripley, B. D. (2002) <ISBN:0-387-95457-0>, Logistic Regression Dobson, A. J., & Barnett, A. G. (2018) <doi:10.1201/9781315182780> and Penalized Logistic Regression Friedman, J. H., Hastie, T., & Tibshirani, R. (2010) <doi:10.18637/jss.v033.i01>.
Authors:
traineR_2.2.0.tar.gz
traineR_2.2.0.zip(r-4.5)traineR_2.2.0.zip(r-4.4)traineR_2.2.0.zip(r-4.3)
traineR_2.2.0.tgz(r-4.4-any)traineR_2.2.0.tgz(r-4.3-any)
traineR_2.2.0.tar.gz(r-4.5-noble)traineR_2.2.0.tar.gz(r-4.4-noble)
traineR_2.2.0.tgz(r-4.4-emscripten)traineR_2.2.0.tgz(r-4.3-emscripten)
traineR.pdf |traineR.html✨
traineR/json (API)
# Install 'traineR' in R: |
install.packages('traineR', repos = c('https://promidat.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/promidat/trainer/issues
Last updated 1 years agofrom:b2ecd88434. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 03 2024 |
R-4.5-win | OK | Nov 03 2024 |
R-4.5-linux | OK | Nov 03 2024 |
R-4.4-win | OK | Nov 03 2024 |
R-4.4-mac | OK | Nov 03 2024 |
R-4.3-win | OK | Nov 03 2024 |
R-4.3-mac | OK | Nov 03 2024 |
Exports:categorical.predictive.powerconfusion.matrixcontr.dummycontr.metriccontr.ordinalgeneral.indexesimportance.plotnumerical.predictive.powerplot.prmdtpredict.ada.prmdtpredict.adabag.prmdtpredict.bayes.prmdtpredict.gbm.prmdtpredict.glm.prmdtpredict.glmnet.prmdtpredict.knn.prmdtpredict.lda.prmdtpredict.neuralnet.prmdtpredict.nnet.prmdtpredict.qda.prmdtpredict.randomForest.prmdtpredict.rpart.prmdtpredict.svm.prmdtpredict.xgb.Booster.prmdtprediction.variable.balanceprint.indexes.prmdtprint.prediction.prmdtprint.prmdtROC.areaROC.plotscalertrain.adatrain.adabagtrain.bayestrain.gbmtrain.glmtrain.glmnettrain.knntrain.ldatrain.neuralnettrain.nnettrain.qdatrain.randomForesttrain.rparttrain.svmtrain.xgboostvarplot
Dependencies:adaadabagbase64encbitopsbslibcachemcaretcaToolsclasscliclockcodetoolscolorspaceConsRankcpp11data.tableDerivdiagramdigestdoParalleldplyre1071evaluatefansifarverfastmapfontawesomeforeachfsfuturefuture.applygbmgenericsggplot2glmnetglobalsgluegowergplotsgtablegtoolshardhathighrhtmltoolshtmlwidgetsigraphipredisobanditeratorsjquerylibjsonliteKernSmoothkknnknitrlabelinglatticelavalifecyclelistenvlubridatemagrittrMASSMatrixmemoisemgcvmimeModelMetricsmunsellneuralnetnlmennetnumDerivparallellypillarpkgconfigplyrpROCprodlimprogressrproxypurrrR6randomForestrappdirsRColorBrewerRcppRcppEigenrecipesreshape2rglrlangrlistrmarkdownROCRrpartsassscalesshapeSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetinytextzdbutf8vctrsviridisLitewithrxfunxgboostXMLyaml