Package: traineR 2.2.0

Oldemar Rodriguez R.

traineR: Predictive (Classification and Regression) Models Homologator

Methods to unify the different ways of creating predictive models and their different predictive formats for classification and regression. It includes methods such as K-Nearest Neighbors Schliep, K. P. (2004) <doi:10.5282/ubm/epub.1769>, Decision Trees Leo Breiman, Jerome H. Friedman, Richard A. Olshen, Charles J. Stone (2017) <doi:10.1201/9781315139470>, ADA Boosting Esteban Alfaro, Matias Gamez, Noelia García (2013) <doi:10.18637/jss.v054.i02>, Extreme Gradient Boosting Chen & Guestrin (2016) <doi:10.1145/2939672.2939785>, Random Forest Breiman (2001) <doi:10.1023/A:1010933404324>, Neural Networks Venables, W. N., & Ripley, B. D. (2002) <ISBN:0-387-95457-0>, Support Vector Machines Bennett, K. P. & Campbell, C. (2000) <doi:10.1145/380995.380999>, Bayesian Methods Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995) <doi:10.1201/9780429258411>, Linear Discriminant Analysis Venables, W. N., & Ripley, B. D. (2002) <ISBN:0-387-95457-0>, Quadratic Discriminant Analysis Venables, W. N., & Ripley, B. D. (2002) <ISBN:0-387-95457-0>, Logistic Regression Dobson, A. J., & Barnett, A. G. (2018) <doi:10.1201/9781315182780> and Penalized Logistic Regression Friedman, J. H., Hastie, T., & Tibshirani, R. (2010) <doi:10.18637/jss.v033.i01>.

Authors:Oldemar Rodriguez R. [aut, cre], Andres Navarro D. [aut], Ariel Arroyo S. [aut], Diego Jimenez A. [aut]

traineR_2.2.0.tar.gz
traineR_2.2.0.zip(r-4.5)traineR_2.2.0.zip(r-4.4)traineR_2.2.0.zip(r-4.3)
traineR_2.2.0.tgz(r-4.5-any)traineR_2.2.0.tgz(r-4.4-any)traineR_2.2.0.tgz(r-4.3-any)
traineR_2.2.0.tar.gz(r-4.5-noble)traineR_2.2.0.tar.gz(r-4.4-noble)
traineR_2.2.0.tgz(r-4.4-emscripten)traineR_2.2.0.tgz(r-4.3-emscripten)
traineR.pdf |traineR.html
traineR/json (API)

# Install 'traineR' in R:
install.packages('traineR', repos = c('https://promidat.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/promidat/trainer/issues

On CRAN:

3.64 score 2 packages 36 scripts 404 downloads 47 exports 118 dependencies

Last updated 1 years agofrom:b2ecd88434. Checks:5 OK, 3 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 01 2025
R-4.5-winNOTEFeb 01 2025
R-4.5-macNOTEFeb 01 2025
R-4.5-linuxNOTEFeb 01 2025
R-4.4-winOKFeb 01 2025
R-4.4-macOKFeb 01 2025
R-4.3-winOKFeb 01 2025
R-4.3-macOKFeb 01 2025

Exports:categorical.predictive.powerconfusion.matrixcontr.dummycontr.metriccontr.ordinalgeneral.indexesimportance.plotnumerical.predictive.powerplot.prmdtpredict.ada.prmdtpredict.adabag.prmdtpredict.bayes.prmdtpredict.gbm.prmdtpredict.glm.prmdtpredict.glmnet.prmdtpredict.knn.prmdtpredict.lda.prmdtpredict.neuralnet.prmdtpredict.nnet.prmdtpredict.qda.prmdtpredict.randomForest.prmdtpredict.rpart.prmdtpredict.svm.prmdtpredict.xgb.Booster.prmdtprediction.variable.balanceprint.indexes.prmdtprint.prediction.prmdtprint.prmdtROC.areaROC.plotscalertrain.adatrain.adabagtrain.bayestrain.gbmtrain.glmtrain.glmnettrain.knntrain.ldatrain.neuralnettrain.nnettrain.qdatrain.randomForesttrain.rparttrain.svmtrain.xgboostvarplot

Dependencies:adaadabagbase64encbitopsbslibcachemcaretcaToolsclasscliclockcodetoolscolorspaceConsRankcpp11data.tableDerivdiagramdigestdoParalleldplyre1071evaluatefansifarverfastmapfontawesomeforeachfsfuturefuture.applygbmgenericsggplot2glmnetglobalsgluegowergplotsgtablegtoolshardhathighrhtmltoolshtmlwidgetsigraphipredisobanditeratorsjquerylibjsonliteKernSmoothkknnknitrlabelinglatticelavalifecyclelistenvlubridatemagrittrMASSMatrixmemoisemgcvmimeModelMetricsmunsellneuralnetnlmennetnumDerivparallellypillarpkgconfigplyrpROCprodlimprogressrproxypurrrR6randomForestrappdirsRColorBrewerRcppRcppEigenrecipesreshape2rglrlangrlistrmarkdownROCRrpartsassscalesshapesparsevctrsSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetinytextzdbutf8vctrsviridisLitewithrxfunxgboostXMLyaml

Readme and manuals

Help Manual

Help pageTopics
categorical.predictive.powercategorical.predictive.power
confusion.matrixconfusion.matrix
contr.dummycontr.dummy
contr.metriccontr.metric
contr.ordinalcontr.ordinal
general.indexesgeneral.indexes
importance.plotimportance.plot
numerical.predictive.powernumerical.predictive.power
Plotting prmdt modelsplot.prmdt
predict.ada.prmdtpredict.ada.prmdt
predict.adabag.prmdtpredict.adabag.prmdt
predict.bayes.prmdtpredict.bayes.prmdt
predict.gbm.prmdtpredict.gbm.prmdt
predict.glm.prmdtpredict.glm.prmdt
predict.glmnet.prmdtpredict.glmnet.prmdt
predict.knn.prmdtpredict.knn.prmdt
predict.lda.prmdtpredict.lda.prmdt
predict.neuralnet.prmdtpredict.neuralnet.prmdt
predict.nnet.prmdtpredict.nnet.prmdt
predict.qda.prmdtpredict.qda.prmdt
predict.randomForest.prmdtpredict.randomForest.prmdt
predict.rpart.prmdtpredict.rpart.prmdt
predict.svm.prmdtpredict.svm.prmdt
predict.xgb.Boosterpredict.xgb.Booster.prmdt
prediction.variable.balanceprediction.variable.balance
Printing prmdt index objectprint.indexes.prmdt
Printing prmdt prediction objectprint.prediction.prmdt
Printing prmdt modelsprint.prmdt
ROC.areaROC.area
ROC.plotROC.plot
scalerscaler
train.adatrain.ada
train.adabagtrain.adabag
train.bayestrain.bayes
train.gbmtrain.gbm
train.glmtrain.glm
train.glmnettrain.glmnet
train.knntrain.knn
train.ldatrain.lda
train.neuralnettrain.neuralnet
train.nnettrain.nnet
train.qdatrain.qda
train.randomForesttrain.randomForest
train.rparttrain.rpart
train.svmtrain.svm
train.xgboosttrain.xgboost
Predictive (Classification and Regression) Models HomologatortraineR
Plotting prmdt ada modelsvarplot