Package 'predictoR'

Title: Predictive Data Analysis System
Description: Perform a supervised data analysis on a database through a 'shiny' graphical interface. It includes methods such as K-Nearest Neighbors, Decision Trees, ADA Boosting, Extreme Gradient Boosting, Random Forest, Neural Networks, Deep Learning, Support Vector Machines and Bayesian Methods.
Authors: Oldemar Rodriguez [aut, cre], Diego Jiménez [ctb, prg]
Maintainer: Oldemar Rodriguez <[email protected]>
License: GPL (>=2)
Version: 3.0.5
Built: 2024-10-30 03:46:14 UTC
Source: https://github.com/PROMiDAT/predictoR

Help Index


Coefficients and lambda

Description

Plot the coefficients and selected lambda of a glmnet model.

Usage

e_coeff_landa(model, category, sel.lambda = NULL, label = "Log Lambda")

Arguments

model

a glmnet model.

category

a category of the variable to be predicted.

sel.lambda

the selected lambda.

label

a character specifying the title to use on selected lambda tooltip.

Value

echarts4r plot

Author(s)

Joseline Quiros <[email protected]>

Examples

modelo <- traineR::train.glmnet(Species~., iris)
e_coeff_landa(modelo, 'setosa', log(modelo$lambda[1]))

Gauge Plot

Description

Gauge Plot

Usage

e_global_gauge(
  value = 100,
  label = "Label",
  color1 = "#B5E391",
  color2 = "#90C468"
)

Arguments

value

a number specifying the value of the graph.

label

a character specifying the title to use on legend.

color1

a color for the gauge.

color2

a shadowColor for the gauge.

Value

echarts4r plot

Author(s)

Joseline Quiros <[email protected]>

Examples

e_global_gauge(87, "Global Precision")

Eval character vectors to JS code

Description

Eval character vectors to JS code

Usage

e_JS(...)

Arguments

...

character vectors to evaluate

Author(s)

Joseline Quiros <[email protected]>

Examples

e_JS('5 * 3')

Possible lambda

Description

Possible lambda

Usage

e_posib_lambda(
  cv.glm,
  labels = c("Valor Superior", "Valor Inferior", "lambda")
)

Arguments

cv.glm

a cv.glmnet model.

labels

a character vector of length 3 specifying the titles to use on legend.

Value

echarts4r plot

Author(s)

Joseline Quiros <[email protected]>

Examples

x         <- model.matrix(Species~., iris)[, -1]
y         <- iris[,'Species']
cv.glm    <- glmnet::cv.glmnet(x, y, standardize = TRUE, alpha = 1, family = 'multinomial')
e_posib_lambda(cv.glm)

Error Evolution

Description

Error Evolution

Usage

e_rf_error(model, label = "Trees")

Arguments

model

a random forest model.

label

a label plot.

Value

echarts4r plot

Author(s)

Joseline Quiros <[email protected]>

Examples

model <- traineR::train.randomForest(Species~., iris, mtry = 2, ntree = 20)
label <- "Trees"
e_rf_error(model, label)

Predictive Data Analysis System

Description

Perform a supervised data analysis on a database through a 'shiny' graphical interface. It includes methods such as K-Nearest Neighbors, Decision Trees, ADA Boosting, Extreme Gradient Boosting, Random Forest, Neural Networks, Deep Learning, Support Vector Machines and Bayesian Methods.

Details

Package: predictoR
Type: Package
Version: 3.0.1
Date: 2022-02-09
License: GPL (>=2)

Author(s)

Oldemar Rodriguez Rojas
Maintainer: Oldemar Rodriguez Rojas <[email protected]>


Run the Shiny Application

Description

Run the Shiny Application

Usage

run_app(...)

Arguments

...

A series of options to be used inside the app.