Title: | Exploratory Data Analysis System |
---|---|
Description: | Performs an exploratory data analysis through a 'shiny' interface. It includes basic methods such as the mean, median, mode, normality test, among others. It also includes clustering techniques such as Principal Components Analysis, Hierarchical Clustering and the K-Means Method. |
Authors: | Oldemar Rodriguez [aut, cre], Diego Jiménez [aut] |
Maintainer: | Oldemar Rodriguez <[email protected]> |
License: | GPL (>=2) |
Version: | 3.1.5 |
Built: | 2024-11-21 04:36:19 UTC |
Source: | https://github.com/PROMiDAT/discoveR |
Calculate inter-class inertia
BP(DF, clusters)
BP(DF, clusters)
DF |
a data.frame object. |
clusters |
a vector specifying the cluster of each individual. |
numeric
Diego Jimenez <[email protected]>
m <- hclust(dist(iris[, -5])) BP(iris[, -5], cutree(m, 3))
m <- hclust(dist(iris[, -5])) BP(iris[, -5], cutree(m, 3))
Calculation of the center of clusters
calc.centros(data, clusters)
calc.centros(data, clusters)
data |
a data.frame object. |
clusters |
a vector specifying the cluster of each individual. |
list
Diego Jimenez <[email protected]>
clusters <- factor(kmeans(iris[, -5], 3)$cluster) calc.centros(iris[, -5], clusters)
clusters <- factor(kmeans(iris[, -5], 3)$cluster) calc.centros(iris[, -5], clusters)
Performs an exploratory data analysis through a 'shiny' interface. It includes basic methods such as the mean, median, mode, normality test, among others. It also includes clustering techniques such as Principal Components Analysis, Hierarchical Clustering and the K-Means Method.
Package: | discoveR |
Type: | Package |
Version: | 3.1.5 |
Date: | 2023-03-28 |
License: | GPL (>=2) |
Maintainer: Oldemar Rodriguez Rojas <[email protected]>
Oldemar Rodriguez Rojas <[email protected]>
Diego Jiménez Alvarado
AFC biplot
e_afcbi( modelo, axes = c(1, 2), colorRow = "steelblue", colorCol = "forestgreen", cos2Row = 0, cos2Col = 0, colorRowCos = "firebrick", colorColCos = "darkorchid", titulos = c("Bien Representados", "Mal Representados"), etq = T )
e_afcbi( modelo, axes = c(1, 2), colorRow = "steelblue", colorCol = "forestgreen", cos2Row = 0, cos2Col = 0, colorRowCos = "firebrick", colorColCos = "darkorchid", titulos = c("Bien Representados", "Mal Representados"), etq = T )
modelo |
an object of class CA [FactoMineR]. |
axes |
a numeric vector of length 2 specifying the dimensions to be plotted. |
colorRow |
a color for the individuals well represented. |
colorCol |
a color for the variables well represented. |
cos2Row |
a numeric value from 0 to 1 specifying the quality of the individuals. |
cos2Col |
a numeric value from 0 to 1 specifying the quality of the variables. |
colorRowCos |
a color for the individuals badly represented. |
colorColCos |
a color for the variables badly represented. |
titulos |
a character vector of length 2 specifying the titles to use on legend. |
etq |
a boolean, whether to add label to graph or not. |
echarts4r plot
Diego Jimenez <[email protected]>
p <- FactoMineR::CA(iris[, -5], graph = FALSE) e_afcbi(p)
p <- FactoMineR::CA(iris[, -5], graph = FALSE) e_afcbi(p)
AFC biplot in 3D
e_afcbi_3D( modelo, axes = c(1, 2, 3), colorRow = "steelblue", colorCol = "forestgreen", cos2Row = 0, cos2Col = 0, colorRowCos = "firebrick", colorColCos = "darkorchid", titulos = c("Bien Representados", "Mal Representados"), etq = T )
e_afcbi_3D( modelo, axes = c(1, 2, 3), colorRow = "steelblue", colorCol = "forestgreen", cos2Row = 0, cos2Col = 0, colorRowCos = "firebrick", colorColCos = "darkorchid", titulos = c("Bien Representados", "Mal Representados"), etq = T )
modelo |
an object of class CA [FactoMineR]. |
axes |
a numeric vector of length 3 specifying the dimensions to be plotted. |
colorRow |
a color for the individuals well represented. |
colorCol |
a color for the variables well represented. |
cos2Row |
a numeric value from 0 to 1 specifying the quality of the individuals. |
cos2Col |
a numeric value from 0 to 1 specifying the quality of the variables. |
colorRowCos |
a color for individuals badly represented. |
colorColCos |
a color for variables badly represented. |
titulos |
a character vector of length 2 specifying the titles to use on legend. |
etq |
a boolean, whether to add label to graph or not. |
echarts4r plot
Diego Jimenez <[email protected]>
p <- FactoMineR::CA(iris[, -5], graph = FALSE) e_afcbi_3D(p)
p <- FactoMineR::CA(iris[, -5], graph = FALSE) e_afcbi_3D(p)
AFC plot of variables
e_afccol( modelo, axes = c(1, 2), colorCol = "forestgreen", cos2 = 0, colorCos = "darkorchid", titulos = c("Bien Representados", "Mal Representados") )
e_afccol( modelo, axes = c(1, 2), colorCol = "forestgreen", cos2 = 0, colorCos = "darkorchid", titulos = c("Bien Representados", "Mal Representados") )
modelo |
an object of class CA [FactoMineR]. |
axes |
a numeric vector of length 2 specifying the dimensions to be plotted. |
colorCol |
a color for the variables well represented. |
cos2 |
a numeric value from 0 to 1 specifying the quality of the variables. |
colorCos |
a color for the variables badly represented. |
titulos |
a character vector of length 2 specifying the titles to use on legend. |
echarts4r plot
Diego Jimenez <[email protected]>
p <- FactoMineR::CA(iris[, -5], graph = FALSE) e_afccol(p)
p <- FactoMineR::CA(iris[, -5], graph = FALSE) e_afccol(p)
AFC plot of variables in 3D
e_afccol_3D( modelo, axes = c(1, 2, 3), colorCol = "forestgreen", cos2 = 0, colorCos = "darkorchid", titulos = c("Bien Representados", "Mal Representados") )
e_afccol_3D( modelo, axes = c(1, 2, 3), colorCol = "forestgreen", cos2 = 0, colorCos = "darkorchid", titulos = c("Bien Representados", "Mal Representados") )
modelo |
an object of class CA [FactoMineR]. |
axes |
a numeric vector of length 3 specifying the dimensions to be plotted. |
colorCol |
a color for the variables well represented. |
cos2 |
a numeric value from 0 to 1 specifying the quality of the variables. |
colorCos |
a color for variables badly represented. |
titulos |
a character vector of length 2 specifying the titles to use on legend. |
echarts4r plot
Diego Jimenez <[email protected]>
p <- FactoMineR::CA(iris[, -5], graph = FALSE) e_afccol_3D(p)
p <- FactoMineR::CA(iris[, -5], graph = FALSE) e_afccol_3D(p)
AFCM biplot
e_afcmbi( modelo, axes = c(1, 2), colorInd = "steelblue", colorVar = "forestgreen", cos2Ind = 0, cos2Var = 0, colorIndCos = "firebrick", colorVarCos = "darkorchid", titulos = c("Bien Representados", "Mal Representados"), etq = T )
e_afcmbi( modelo, axes = c(1, 2), colorInd = "steelblue", colorVar = "forestgreen", cos2Ind = 0, cos2Var = 0, colorIndCos = "firebrick", colorVarCos = "darkorchid", titulos = c("Bien Representados", "Mal Representados"), etq = T )
modelo |
an object of class AFCM [FactoMineR]. |
axes |
a numeric vector of length 2 specifying the dimensions to be plotted. |
colorInd |
a color for the individuals well represented. |
colorVar |
a color for the variables well represented. |
cos2Ind |
a numeric value from 0 to 1 specifying the quality of the individuals. |
cos2Var |
a numeric value from 0 to 1 specifying the quality of the variables. |
colorIndCos |
a color for the individuals badly represented. |
colorVarCos |
a color for the variables badly represented. |
titulos |
a character vector of length 2 specifying the titles to use on legend. |
etq |
a boolean, whether to add label to graph or not. |
echarts4r plot
Diego Jimenez <[email protected]>
data("poison", package = "FactoMineR") poison.active <- poison[1:55, 5:15] p <- FactoMineR::MCA(poison.active, graph = FALSE) e_afcmbi(p)
data("poison", package = "FactoMineR") poison.active <- poison[1:55, 5:15] p <- FactoMineR::MCA(poison.active, graph = FALSE) e_afcmbi(p)
AFCM biplot in 3D
e_afcmbi_3D( modelo, axes = c(1, 2, 3), colorInd = "steelblue", colorVar = "forestgreen", cos2Ind = 0, cos2Var = 0, colorIndCos = "firebrick", colorVarCos = "darkorchid", titulos = c("Bien Representados", "Mal Representados"), etq = T )
e_afcmbi_3D( modelo, axes = c(1, 2, 3), colorInd = "steelblue", colorVar = "forestgreen", cos2Ind = 0, cos2Var = 0, colorIndCos = "firebrick", colorVarCos = "darkorchid", titulos = c("Bien Representados", "Mal Representados"), etq = T )
modelo |
an object of class AFCM [FactoMineR]. |
axes |
a numeric vector of length 3 specifying the dimensions to be plotted. |
colorInd |
a color for the individuals well represented. |
colorVar |
a color for the variables well represented. |
cos2Ind |
a numeric value from 0 to 1 specifying the quality of the individuals. |
cos2Var |
a numeric value from 0 to 1 specifying the quality of the variables. |
colorIndCos |
a color for individuals badly represented. |
colorVarCos |
a color for variables badly represented. |
titulos |
a character vector of length 2 specifying the titles to use on legend. |
etq |
a boolean, whether to add label to graph or not. |
echarts4r plot
Diego Jimenez <[email protected]>
data("poison", package = "FactoMineR") poison.active <- poison[1:55, 5:15] p <- FactoMineR::MCA(poison.active, graph = FALSE) e_afcmbi_3D(p)
data("poison", package = "FactoMineR") poison.active <- poison[1:55, 5:15] p <- FactoMineR::MCA(poison.active, graph = FALSE) e_afcmbi_3D(p)
AFCM plot of categories
e_afcmcat( modelo, axes = c(1, 2), colorCat = "forestgreen", cos2 = 0, colorCos = "darkorchid", titulos = c("Bien Representados", "Mal Representados") )
e_afcmcat( modelo, axes = c(1, 2), colorCat = "forestgreen", cos2 = 0, colorCos = "darkorchid", titulos = c("Bien Representados", "Mal Representados") )
modelo |
an object of class AFCM [FactoMineR]. |
axes |
a numeric vector of length 2 specifying the dimensions to be plotted. |
colorCat |
a color for the categories well represented. |
cos2 |
a numeric value from 0 to 1 specifying the quality of the categories. |
colorCos |
a color for the categories badly represented. |
titulos |
a character vector of length 2 specifying the titles to use on legend. |
echarts4r plot
Diego Jimenez <[email protected]>
data("poison", package = "FactoMineR") poison.active <- poison[1:55, 5:15] p <- FactoMineR::MCA(poison.active, graph = FALSE) e_afcmcat(p)
data("poison", package = "FactoMineR") poison.active <- poison[1:55, 5:15] p <- FactoMineR::MCA(poison.active, graph = FALSE) e_afcmcat(p)
AFCM plot of categories in 3D
e_afcmcat_3D( modelo, axes = c(1, 2, 3), colorCat = "forestgreen", cos2 = 0, colorCos = "darkorchid", titulos = c("Bien Representados", "Mal Representados") )
e_afcmcat_3D( modelo, axes = c(1, 2, 3), colorCat = "forestgreen", cos2 = 0, colorCos = "darkorchid", titulos = c("Bien Representados", "Mal Representados") )
modelo |
an object of class AFCM [FactoMineR]. |
axes |
a numeric vector of length 3 specifying the dimensions to be plotted. |
colorCat |
a color for the categories well represented. |
cos2 |
a numeric value from 0 to 1 specifying the quality of the categories. |
colorCos |
a color for categories badly represented. |
titulos |
a character vector of length 2 specifying the titles to use on legend. |
echarts4r plot
Diego Jimenez <[email protected]>
data("poison", package = "FactoMineR") poison.active <- poison[1:55, 5:15] p <- FactoMineR::MCA(poison.active, graph = FALSE) e_afcmcat_3D(p)
data("poison", package = "FactoMineR") poison.active <- poison[1:55, 5:15] p <- FactoMineR::MCA(poison.active, graph = FALSE) e_afcmcat_3D(p)
AFCM plot of individuals
e_afcmind( modelo, axes = c(1, 2), colorInd = "steelblue", cos2 = 0, colorCos = "firebrick", titulos = c("Bien Representados", "Mal Representados"), etq = T )
e_afcmind( modelo, axes = c(1, 2), colorInd = "steelblue", cos2 = 0, colorCos = "firebrick", titulos = c("Bien Representados", "Mal Representados"), etq = T )
modelo |
an object of class AFCM [FactoMineR]. |
axes |
a numeric vector of length 2 specifying the dimensions to be plotted. |
colorInd |
a color for the individuals well represented. |
cos2 |
a numeric value from 0 to 1 specifying the quality of the individuals. |
colorCos |
a color for individuals badly represented. |
titulos |
a character vector of length 2 specifying the titles to use on legend. |
etq |
a boolean, whether to add label to graph or not. |
echarts4r plot
Diego Jimenez <[email protected]>
data("poison", package = "FactoMineR") poison.active <- poison[1:55, 5:15] p <- FactoMineR::MCA(poison.active, graph = FALSE) e_afcmind(p)
data("poison", package = "FactoMineR") poison.active <- poison[1:55, 5:15] p <- FactoMineR::MCA(poison.active, graph = FALSE) e_afcmind(p)
AFCM plot of individuals in 3D
e_afcmind_3D( modelo, axes = c(1, 2, 3), colorInd = "steelblue", cos2 = 0, colorCos = "firebrick", titulos = c("Bien Representados", "Mal Representados"), etq = T )
e_afcmind_3D( modelo, axes = c(1, 2, 3), colorInd = "steelblue", cos2 = 0, colorCos = "firebrick", titulos = c("Bien Representados", "Mal Representados"), etq = T )
modelo |
an object of class AFCM [FactoMineR]. |
axes |
a numeric vector of length 3 specifying the dimensions to be plotted. |
colorInd |
a color for the individuals well represented. |
cos2 |
a numeric value from 0 to 1 specifying the quality of the individuals. |
colorCos |
a color for individuals badly represented. |
titulos |
a character vector of length 2 specifying the titles to use on legend. |
etq |
a boolean, whether to add label to graph or not. |
echarts4r plot
Diego Jimenez <[email protected]>
data("poison", package = "FactoMineR") poison.active <- poison[1:55, 5:15] p <- FactoMineR::MCA(poison.active, graph = FALSE) e_afcmind_3D(p)
data("poison", package = "FactoMineR") poison.active <- poison[1:55, 5:15] p <- FactoMineR::MCA(poison.active, graph = FALSE) e_afcmind_3D(p)
AFCM plot of variables
e_afcmvar(modelo, axes = c(1, 2), colorVar = "forestgreen")
e_afcmvar(modelo, axes = c(1, 2), colorVar = "forestgreen")
modelo |
an object of class AFCM [FactoMineR]. |
axes |
a numeric vector of length 2 specifying the dimensions to be plotted. |
colorVar |
a color for the variables. |
echarts4r plot
Diego Jimenez <[email protected]>
data("poison", package = "FactoMineR") poison.active <- poison[1:55, 5:15] p <- FactoMineR::MCA(poison.active, graph = FALSE) e_afcmvar(p)
data("poison", package = "FactoMineR") poison.active <- poison[1:55, 5:15] p <- FactoMineR::MCA(poison.active, graph = FALSE) e_afcmvar(p)
AFCM plot of variables in 3D
e_afcmvar_3D(modelo, axes = c(1, 2, 3), colorVar = "forestgreen")
e_afcmvar_3D(modelo, axes = c(1, 2, 3), colorVar = "forestgreen")
modelo |
an object of class AFCM [FactoMineR]. |
axes |
a numeric vector of length 3 specifying the dimensions to be plotted. |
colorVar |
a color for the variables well represented. |
echarts4r plot
Diego Jimenez <[email protected]>
data("poison", package = "FactoMineR") poison.active <- poison[1:55, 5:15] p <- FactoMineR::MCA(poison.active, graph = FALSE) e_afcmvar_3D(p)
data("poison", package = "FactoMineR") poison.active <- poison[1:55, 5:15] p <- FactoMineR::MCA(poison.active, graph = FALSE) e_afcmvar_3D(p)
AFC plot of individuals
e_afcrow( modelo, axes = c(1, 2), colorRow = "steelblue", cos2 = 0, colorCos = "firebrick", titulos = c("Bien Representados", "Mal Representados"), etq = T )
e_afcrow( modelo, axes = c(1, 2), colorRow = "steelblue", cos2 = 0, colorCos = "firebrick", titulos = c("Bien Representados", "Mal Representados"), etq = T )
modelo |
an object of class CA [FactoMineR]. |
axes |
a numeric vector of length 2 specifying the dimensions to be plotted. |
colorRow |
a color for the individuals well represented. |
cos2 |
a numeric value from 0 to 1 specifying the quality of the individuals. |
colorCos |
a color for individuals badly represented. |
titulos |
a character vector of length 2 specifying the titles to use on legend. |
etq |
a boolean, whether to add label to graph or not. |
echarts4r plot
Diego Jimenez <[email protected]>
p <- FactoMineR::CA(iris[, -5], graph = FALSE) e_afcrow(p)
p <- FactoMineR::CA(iris[, -5], graph = FALSE) e_afcrow(p)
AFC plot of individuals in 3D
e_afcrow_3D( modelo, axes = c(1, 2, 3), colorRow = "steelblue", cos2 = 0, colorCos = "firebrick", titulos = c("Bien Representados", "Mal Representados"), etq = T )
e_afcrow_3D( modelo, axes = c(1, 2, 3), colorRow = "steelblue", cos2 = 0, colorCos = "firebrick", titulos = c("Bien Representados", "Mal Representados"), etq = T )
modelo |
an object of class CA [FactoMineR]. |
axes |
a numeric vector of length 3 specifying the dimensions to be plotted. |
colorRow |
a color for the individuals well represented. |
cos2 |
a numeric value from 0 to 1 specifying the quality of the individuals. |
colorCos |
a color for individuals badly represented. |
titulos |
a character vector of length 2 specifying the titles to use on legend. |
etq |
a boolean, whether to add label to graph or not. |
echarts4r plot
Diego Jimenez <[email protected]>
p <- FactoMineR::CA(iris[, -5], graph = FALSE) e_afcrow_3D(p)
p <- FactoMineR::CA(iris[, -5], graph = FALSE) e_afcrow_3D(p)
Balloonplot
e_balloon(datos)
e_balloon(datos)
datos |
a data frame object. |
echarts4r plot
Diego Jimenez <[email protected]>
e_balloon(iris)
e_balloon(iris)
Barplot for categoric variable by clusters.
e_cat(clusters, var, colores = NULL, escalar = T)
e_cat(clusters, var, colores = NULL, escalar = T)
clusters |
a vector specifying the cluster of each individual. |
var |
a factor column of a data.frame. |
colores |
a vector of color for each cluster. |
escalar |
a boolean value specifying if use percentage or real values. |
echarts4r plot
Diego Jimenez <[email protected]>
clusters <- factor(kmeans(iris[, -5], 3)$cluster) e_cat(clusters, iris[, 5], colores = c("steelblue", "pink", "forestgreen"))
clusters <- factor(kmeans(iris[, -5], 3)$cluster) e_cat(clusters, iris[, 5], colores = c("steelblue", "pink", "forestgreen"))
Horizontal representation for centers of clusters.
e_horiz(centros, colores = NULL)
e_horiz(centros, colores = NULL)
centros |
a data.frame object with the centers of the clusters. |
colores |
a vector of color for each cluster. |
echarts4r plot
Diego Jimenez <[email protected]>
clusters <- factor(kmeans(iris[, -5], 3)$cluster) c <- calc.centros(iris[, -5], clusters) e_horiz(c$real, c("steelblue", "pink", "forestgreen"))
clusters <- factor(kmeans(iris[, -5], 3)$cluster) c <- calc.centros(iris[, -5], clusters) e_horiz(c$real, c("steelblue", "pink", "forestgreen"))
Inertia plot of clusterization
e_inercia( data, titulos = c("Inercia", "Inercia Inter-Clase", "Inercia Inter-Clase") )
e_inercia( data, titulos = c("Inercia", "Inercia Inter-Clase", "Inercia Inter-Clase") )
data |
a data.frame object with the inertia values. |
titulos |
a character vector of length 3 specifying the titles to use on legend. |
echarts4r plot
Diego Jimenez <[email protected]>
Jambu Elbow plot
e_jambu(data, max.clusters)
e_jambu(data, max.clusters)
data |
a data.frame object. |
max.clusters |
a numeric value specifying the number of times to generate the model. |
echarts4r plot
Diego Jimenez <[email protected]>
e_jambu(iris[, -5], 10)
e_jambu(iris[, -5], 10)
PCA plot of individuals colored by clusters
e_mapa(pca.model, clusters, colores = NULL, ejes = c(1, 2), etq = F)
e_mapa(pca.model, clusters, colores = NULL, ejes = c(1, 2), etq = F)
pca.model |
an object of class PCA [FactoMineR]. |
clusters |
a vector specifying the cluster of each individual. |
colores |
a vector of color for each cluster. |
ejes |
a numeric vector of length 2 specifying the dimensions to be plotted. |
etq |
a boolean, whether to add label to graph or not. |
echarts4r plot
Diego Jimenez <[email protected]>
p <- FactoMineR::PCA(iris[, -5], graph = FALSE) clusters <- factor(kmeans(iris[, -5], 3)$cluster) e_mapa(p, clusters, c("steelblue", "pink", "forestgreen"), etq = FALSE)
p <- FactoMineR::PCA(iris[, -5], graph = FALSE) clusters <- factor(kmeans(iris[, -5], 3)$cluster) e_mapa(p, clusters, c("steelblue", "pink", "forestgreen"), etq = FALSE)
PCA plot of individuals colored by clusters
e_mapa_3D(pca.model, clusters, colores = NULL, ejes = c(1, 2, 3), etq = F)
e_mapa_3D(pca.model, clusters, colores = NULL, ejes = c(1, 2, 3), etq = F)
pca.model |
an object of class PCA [FactoMineR]. |
clusters |
a vector specifying the cluster of each individual. |
colores |
a vector of color for each cluster. |
ejes |
a numeric vector of length 3 specifying the dimensions to be plotted. |
etq |
a boolean, whether to add label to graph or not. |
echarts4r plot
Diego Jimenez <[email protected]>
p <- FactoMineR::PCA(iris[, -5], graph = FALSE) clusters <- factor(kmeans(iris[, -5], 3)$cluster) e_mapa_3D(p, clusters, c("steelblue", "pink", "forestgreen"), etq = FALSE)
p <- FactoMineR::PCA(iris[, -5], graph = FALSE) clusters <- factor(kmeans(iris[, -5], 3)$cluster) e_mapa_3D(p, clusters, c("steelblue", "pink", "forestgreen"), etq = FALSE)
PCA biplot
e_pcabi( modelo, axes = c(1, 2), colorInd = "steelblue", colorVar = "forestgreen", cos2Ind = 0, cos2Var = 0, colorIndCos = "firebrick", colorVarCos = "darkorchid", titulos = c("Bien Representados", "Mal Representados"), etq = F )
e_pcabi( modelo, axes = c(1, 2), colorInd = "steelblue", colorVar = "forestgreen", cos2Ind = 0, cos2Var = 0, colorIndCos = "firebrick", colorVarCos = "darkorchid", titulos = c("Bien Representados", "Mal Representados"), etq = F )
modelo |
an object of class PCA [FactoMineR]. |
axes |
a numeric vector of length 2 specifying the dimensions to be plotted. |
colorInd |
a color for the individuals well represented. |
colorVar |
a color for the variables well represented. |
cos2Ind |
a numeric value from 0 to 1 specifying the quality of the individuals. |
cos2Var |
a numeric value from 0 to 1 specifying the quality of the variables. |
colorIndCos |
a color for the individuals badly represented. |
colorVarCos |
a color for the variables badly represented. |
titulos |
a character vector of length 2 specifying the titles to use on legend. |
etq |
a boolean, whether to add label to graph or not. |
echarts4r plot
Diego Jimenez <[email protected]>
p <- FactoMineR::PCA(iris[, -5], graph = FALSE) e_pcabi(p)
p <- FactoMineR::PCA(iris[, -5], graph = FALSE) e_pcabi(p)
PCA biplot in 3D
e_pcabi_3D( modelo, axes = c(1, 2, 3), colorInd = "steelblue", colorVar = "forestgreen", cos2Ind = 0, cos2Var = 0, colorIndCos = "firebrick", colorVarCos = "darkorchid", titulos = c("Bien Representados", "Mal Representados"), etq = F )
e_pcabi_3D( modelo, axes = c(1, 2, 3), colorInd = "steelblue", colorVar = "forestgreen", cos2Ind = 0, cos2Var = 0, colorIndCos = "firebrick", colorVarCos = "darkorchid", titulos = c("Bien Representados", "Mal Representados"), etq = F )
modelo |
an object of class PCA [FactoMineR]. |
axes |
a numeric vector of length 3 specifying the dimensions to be plotted. |
colorInd |
a color for the individuals well represented. |
colorVar |
a color for the variables well represented. |
cos2Ind |
a numeric value from 0 to 1 specifying the quality of the individuals. |
cos2Var |
a numeric value from 0 to 1 specifying the quality of the variables. |
colorIndCos |
a color for individuals badly represented. |
colorVarCos |
a color for variables badly represented. |
titulos |
a character vector of length 2 specifying the titles to use on legend. |
etq |
a boolean, whether to add label to graph or not. |
echarts4r plot
Diego Jimenez <[email protected]>
p <- FactoMineR::PCA(iris[, -5], graph = FALSE) e_pcabi_3D(p)
p <- FactoMineR::PCA(iris[, -5], graph = FALSE) e_pcabi_3D(p)
PCA plot of individuals
e_pcaind( modelo, axes = c(1, 2), colorInd = "steelblue", cos2 = 0, colorCos = "firebrick", titulos = c("Bien Representados", "Mal Representados"), etq = F )
e_pcaind( modelo, axes = c(1, 2), colorInd = "steelblue", cos2 = 0, colorCos = "firebrick", titulos = c("Bien Representados", "Mal Representados"), etq = F )
modelo |
an object of class PCA [FactoMineR]. |
axes |
a numeric vector of length 2 specifying the dimensions to be plotted. |
colorInd |
a color for the individuals well represented. |
cos2 |
a numeric value from 0 to 1 specifying the quality of the individuals. |
colorCos |
a color for individuals badly represented. |
titulos |
a character vector of length 2 specifying the titles to use on legend. |
etq |
a boolean, whether to add label to graph or not. |
echarts4r plot
Diego Jimenez <[email protected]>
p <- FactoMineR::PCA(iris[, -5], graph = FALSE) e_pcaind(p)
p <- FactoMineR::PCA(iris[, -5], graph = FALSE) e_pcaind(p)
PCA plot of individuals in 3D
e_pcaind_3D( modelo, axes = c(1, 2, 3), colorInd = "steelblue", cos2 = 0, colorCos = "firebrick", titulos = c("Bien Representados", "Mal Representados"), etq = F )
e_pcaind_3D( modelo, axes = c(1, 2, 3), colorInd = "steelblue", cos2 = 0, colorCos = "firebrick", titulos = c("Bien Representados", "Mal Representados"), etq = F )
modelo |
an object of class PCA [FactoMineR]. |
axes |
a numeric vector of length 3 specifying the dimensions to be plotted. |
colorInd |
a color for the individuals well represented. |
cos2 |
a numeric value from 0 to 1 specifying the quality of the individuals. |
colorCos |
a color for individuals badly represented. |
titulos |
a character vector of length 2 specifying the titles to use on legend. |
etq |
a boolean, whether to add label to graph or not. |
echarts4r plot
Diego Jimenez <[email protected]>
p <- FactoMineR::PCA(iris[, -5], graph = FALSE) e_pcaind_3D(p)
p <- FactoMineR::PCA(iris[, -5], graph = FALSE) e_pcaind_3D(p)
PCA plot of variables
e_pcavar( modelo, axes = c(1, 2), colorVar = "forestgreen", cos2 = 0, colorCos = "darkorchid", titulos = c("Bien Representados", "Mal Representados") )
e_pcavar( modelo, axes = c(1, 2), colorVar = "forestgreen", cos2 = 0, colorCos = "darkorchid", titulos = c("Bien Representados", "Mal Representados") )
modelo |
an object of class PCA [FactoMineR]. |
axes |
a numeric vector of length 2 specifying the dimensions to be plotted. |
colorVar |
a color for the variables well represented. |
cos2 |
a numeric value from 0 to 1 specifying the quality of the variables. |
colorCos |
a color for the variables badly represented. |
titulos |
a character vector of length 2 specifying the titles to use on legend. |
echarts4r plot
Diego Jimenez <[email protected]>
p <- FactoMineR::PCA(iris[, -5], graph = FALSE) e_pcavar(p)
p <- FactoMineR::PCA(iris[, -5], graph = FALSE) e_pcavar(p)
PCA plot of variables in 3D
e_pcavar_3D( modelo, axes = c(1, 2, 3), colorVar = "forestgreen", cos2 = 0, colorCos = "darkorchid", titulos = c("Bien Representados", "Mal Representados") )
e_pcavar_3D( modelo, axes = c(1, 2, 3), colorVar = "forestgreen", cos2 = 0, colorCos = "darkorchid", titulos = c("Bien Representados", "Mal Representados") )
modelo |
an object of class PCA [FactoMineR]. |
axes |
a numeric vector of length 3 specifying the dimensions to be plotted. |
colorVar |
a color for the variables well represented. |
cos2 |
a numeric value from 0 to 1 specifying the quality of the variables. |
colorCos |
a color for variables badly represented. |
titulos |
a character vector of length 2 specifying the titles to use on legend. |
echarts4r plot
Diego Jimenez <[email protected]>
p <- FactoMineR::PCA(iris[, -5], graph = FALSE) e_pcavar_3D(p)
p <- FactoMineR::PCA(iris[, -5], graph = FALSE) e_pcavar_3D(p)
Radar representation for centers of clusters.
e_radar(centros, colores = NULL)
e_radar(centros, colores = NULL)
centros |
a data.frame object with the centers of the clusters. |
colores |
a vector of color for each cluster. |
echarts4r plot
Diego Jimenez <[email protected]>
clusters <- factor(kmeans(iris[, -5], 3)$cluster) c <- calc.centros(iris[, -5], clusters) e_radar(c$porcentual, c("steelblue", "pink", "forestgreen"))
clusters <- factor(kmeans(iris[, -5], 3)$cluster) c <- calc.centros(iris[, -5], clusters) e_radar(c$porcentual, c("steelblue", "pink", "forestgreen"))
Silhouette plot
e_silhouette(data, max.clusters)
e_silhouette(data, max.clusters)
data |
a data.frame object. |
max.clusters |
a numeric value specifying the number of times to generate the model. |
echarts4r plot
Diego Jimenez <[email protected]>
e_silhouette(iris[, -5], 10)
e_silhouette(iris[, -5], 10)
Vertical representation for centers of clusters.
e_vert(centros, colores = NULL)
e_vert(centros, colores = NULL)
centros |
a data.frame object with the centers of the clusters. |
colores |
a vector of color for each cluster. |
echarts4r plot
Diego Jimenez <[email protected]>
clusters <- factor(kmeans(iris[, -5], 3)$cluster) c <- calc.centros(iris[, -5], clusters) e_vert(c$real, c("steelblue", "pink", "forestgreen"))
clusters <- factor(kmeans(iris[, -5], 3)$cluster) c <- calc.centros(iris[, -5], clusters) e_vert(c$real, c("steelblue", "pink", "forestgreen"))
Dendrogram plot
gg_dendrograma(model, k, colors = NULL)
gg_dendrograma(model, k, colors = NULL)
model |
an object of class hclust. |
k |
a vector specifying the cluster of each individual. |
colors |
a vector of color for each cluster. |
ggplot
Diego Jimenez <[email protected]>
Calculate total inertia
inercia.total(DF)
inercia.total(DF)
DF |
a data.frame object. |
numeric
Diego Jimenez <[email protected]>
Run the Shiny Application
run_app(...)
run_app(...)
... |
A series of options to be used inside the app. |
if(interactive()) { run_app() }
if(interactive()) { run_app() }
Calculate intra-class inertia
WP(DF, clusters)
WP(DF, clusters)
DF |
a data.frame object. |
clusters |
a vector specifying the cluster of each individual. |
numeric
Diego Jimenez <[email protected]>
m <- hclust(dist(iris[, -5])) WP(iris[, -5], cutree(m, 3))
m <- hclust(dist(iris[, -5])) WP(iris[, -5], cutree(m, 3))